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Abstract. For neural networks in which the couplings J,, are allowed to take on the values 
J,, = 1 or J,, = -1, we determine numerically the critical storage capacity for random 
unbiased pattems as a function of the stability. We use an exact enumeration scheme 
based on the Gray code and a continuous distribution for the pattems to control finite-size 
effects. Results are presented for N s 25; they indicate an optimal storage capacity of 
a, = 0.82 (N  + CO). 

An important result in the ‘modem’ theory of neural networks is due to Gardner (1987, 
1988). By means of a replica calculation she determined the typical volume of 
real-valued interactions Ju ( i ,  j = 1, . . . , N ;  ( N  + CO))  with Xj J i  = N which satisfy 

e? J&j’ 5 ~m i = l ,  . . . ,  N p = 1, . . . , p. (1) 
j 

In (1) the are fixed independent random patterns, which take on the values ef = +1 
and 5: = -1 with probability (1  + m ) / 2  and (1 - m ) / 2 ,  respectively ( m  is called bias). 

This problem is in some respect the inverse of the mean-field theory of spin glasses, 
where, for example, the properties of a Hamiltonian 

are considered. There ( J u )  is a fixed (symmetric) random matrix and the spins are 
allowed to vary, i.e. the roles of couplings and spins are interchanged. The spherical 
condition Xj J ;  = N for the neural network then corresponds to the spherical model 
of spin glasses (Xi Sf = N )  (Kosterlitz et a1 1976). 

The calculation of Gardner marked a significant progress in the theory because it 
showed that the replica method can be used in the phase space of couplings Ju and, 
more generally, for systems in which these couplings are not necessarily symmetric 
(Jv  # 4i). In addition, her results were of much practical importance as they settled 
the problem of the optimal storage capacity in Hopfield-type neural networks under 
the zero temperature dynamics 

sgn Jus:‘) i = l ,  ..., N. (3) S y + l )  = 
j 
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The stability condition for all patterns &‘( =( (f , 62’ , . . . ,[”)) under the dynamics 
(3) is 5’ = sgn(EjJ&‘) ( i  = 1,  . . . , N ;  p = 1, . . . , p ) ;  this is equivalent to ( 1 )  with 
stability K = 0. The optimal storage capacity a, = a,( K = 0) appears in Gardner’s elegant 
formulation as the value of a = p /  N at which the typical fractional volume of the 
sphere E, J $  = N which solves ( 1 )  goes to zero, at K = 0. 

The results are by now well known: a, = 2, for unbiased patterns (cf Cover 1965, 
Venkatesh 1986); for strongly biased patterns the result is a,- l /[(m - 1 )  log(1- m)] 
( m + l ) .  

Gardner’s calculation for this ‘spherical’ model Ej Jf = N is unambiguous: replica 
symmetry has to be assumed but can be shown to remain intact. Thus, the solution 
she proposed is at least locally stable. The predictions for a , ( ~ )  have been confirmed 
numerically with an optimal stability algorithm (Krauth and Mkzard 1987). 

In this letter we will be concerned with a system in which the coupling matrix 
consists not of arbitrary real variables, but of Ising-type variables Ju = + 1  or Ji, = - 1 .  
This system may be thought to model more faithfully practical neural networks in 
which the precision of the Ju is fixed. Conceptually, the J = *1 model offers some 
advantages over the spherical model, especially since the information content of the 
coupling matrix can be determined. It follows from information theory that the capacity 
of this model should be smaller than or equal to I (Gardner and Derrida 1988). 

This J = * 1  model of neural networks is related to the Sherrington-Kirkpatrick 
model of spin glasses in the same way as the Xj J $  = N model to the spherical one of 
Kosterlitz et al. This suggests that the two network models might have quite different 
properties as well. 

There has been some study of this model before. A replica symmetric calculation 
is still possible (Gardner and Derrida 1988) (it gives a, = 4/7r), but the replica symmetry 
is broken above a de Almeida-Thouless (AT) line, which passes through a = 1.03 for 
K = 0. Thus, the critical capacity is basically not known. 

The simulation of the Jv = *I neural network is also more complicated. (See Amaldi 
and Nicolis (1988) and Gardner and Derrida (1988) who obtained rough estimates of 
a,.) Since there is no perceptron-type learning algorithm (guaranteed to converge if 
there exists a solution), not to speak of a well-behaved optimal stability algorithm, we 
resort to an exact enumeration method. We are thus avoiding the drawbacks of Monte 
Carlo simulations. To cope with the equally annoying problem of small system sizes, 
we use here a sophisticated algorithm, which allows us to reach rather large sizes and 
a continuous probability distribution for the patterns, to reduce finite-size effects. 

As in the work of Gardner we consider just one row of the matrix (JG) (with fixed 
index i ) .  For one sample of patterns we define the variable K~ = minfi{EJGTr/m},  
and the optimal stability as Kept = maxJ{ Q } .  The critical storage capacity a,( K )  is then 
found as the inverse of K o p t ( a ) .  Calculating the optimal stability involves, for one 
given sample of random patterns 7’’ = [re”, to check all the 2 N  possible vectors 
J = (Jil, 42, . . . , J i N ) .  This is less of a brute force method than it might seem: there 
is room for algorithmic subtleties, and the use of them in combination with a powerful 
vector computer allows us to consider (with good statistics) systems up to the size 
N = 25. 

After generation of a set of random patterns (we restrict ourselves to unbiased 
patterns with m = 0), the calculation of the optimal stability is not complicated. One 
just determines for each of the 2 N  possible vectors the variable K ~ .  Since we are free 
to choose the order in which the possible vectors J are scanned, we use the minimal 
change order provided by the Gray code (Reingold er a1 1977). In the Gray code one 
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vector J is derived from the previous one by flipping just one of the Jk .  This simplifies 
enormously the calculation of the stabilities A’” = Xj J i j g r  at each step, compared to 
an order of the J analogous to counting in the binary system. 

The resulting algorithm is amazingly fast. For our largest systems with N = 25 it 
enumerates all possible couplings in 400 s. Of this time it spends about 1/7 on counting 
(Gray code) and 6/7 on other computing (calculating stabilities, taking minima and 
maxima, bookkeeping). This excellent ratio is due to the fact that the numerical part 
can be performed in parallel. 

As we are interested in the optimal stability K , , ~ ~  for large systems it may seem 
natural to calculate max,{min, Z J b g j ’ } / m ,  to average over many samples and to try 
one’s luck with an extrapolation to N+w. This has in fact been done, but without 
success. The fact that the possible values of the stability are discrete with a spacing 
of 2 / d N  for binary-valued patterns seems to preclude this approach. In fact, the 
resulting curves are rather erratic, and there is a large parity effect (see figure 1) .  

It is for this reason that we add one more trick: instead of restricting the values of 
the gj” to binary values *l we use random variables gj’ with a continuous distribution. 
For the present model it becomes clear from the theoretical treatment that the statistical 
properties depend only on the first two moments of the distribution for N + 00 (cf the 
situation in the Sherrington-Kirkpatrick (1975) model, in which a Gaussian disorder 
was used for convenience only). 

1 0.3 / a: 0.75 

I 
Figure 1. Values of K ~ ~ , ( N ,  a) as a function of 1/ N for a =$  j, 4 and 1 (plotted as data 
points with error bars) and their extrapolations to N -D CO. For comparison we display the 
corresponding values from earlier simulations with &‘ = * I  for a = 1 (plotted as open 
rectangles). 
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The model with continuous 7 has the advantage of yielding continuous values for 
the stabilities as well. As we will see, the limit N+oo is much smoother and an 
extrapolation becomes possible. For concreteness we choose the normalised Gaussian 
distribution 

The mean values of the optimal stabilities K,,~~(N, a) are found by averaging over a 
large number of samples (e.g. 10 000 samples at N = 10, 500 samples at N = 25) for 
values of a ranging from 0.25 to 2.0. The results for a = 0.75, 0.8, 0.857 and 1.0 are 
given in figure 1. An extrapolation in 1/N seems to pose no problem, and leads to 
rather precise predictions for the value of L Y , ( K )  in the thermodynamic limit N + CO. 
To show what we have gained by using continuous patterns, we display for comparison 
the results of earlier simulations with patterns 67 = *1 for a = 1. (We stress again that 
in the limit N+CO both distributions of patterns must yield the same C X , ( K ) . )  

The extrapolated values of CY,(K) are given in figure 2. We use the opportunity to 
display our numerical results together with the results for ( Y , ( K )  in the replica symmetric 
approximation and for the AT line. The critical capacity for the spherical model is 
included also. 

The evolving picture of our numerical investigation is the following: the critical 
storage ratio a, of the J = *1 neural network seems to be close to 0.82. For all values 
of K we find results for ( Y , ( K )  which are below the AT line and, as it should be, below 
the critical capacity ofthe spherical model. It is needless to caution that these statements 
(for N + CO) critically depend on the validity of our finite-size scaling hypothesis, which 

Figure 2. Critical lines for Hopfield-type models. The points on the lowest curve give the 
values of K , ~ ~  as determined numerically for a =;, :, 8, 1, i, 2 (the curve is a guideline to 
the eye). The other curves give, from above, the critical storage capacity a c ( K )  for the 
‘spherical’ model (Z, J i  = N), the storage capacity for the J = * I  model in the replica- 
symmetric approximation, and the de Almeida-Thouless line, above which replica symmetry 
is broken. 
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should be checked at larger values of N and which should be given a theoretical 
foundation. Certainly this model merits further theoretical study. 

We would expect that the efficient enumeration provided by the Gray code may 
be used in different circumstances, as for exhaustive studies of spin glasses. 
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